Generalized Algorithm of Tchebyshev Scalarization for Set-Valued Maps
نویسنده
چکیده
The aim of this paper is to investigate several inherited properties of convexity for set-valued maps and develop computational procedure based on such inherited properties. In this paper, we introduced two types of characteristic functions by using Tchebyshev scalarization, and defined four types of scalarization functions to characterize the images of set-valued maps.
منابع مشابه
Hölder continuity of solution maps to a parametric weak vector equilibrium problem
In this paper, by using a new concept of strong convexity, we obtain sufficient conditions for Holder continuity of the solution mapping for a parametric weak vector equilibrium problem in the case where the solution mapping is a general set-valued one. Without strong monotonicity assumptions, the Holder continuity for solution maps to parametric weak vector optimization problems is discussed.
متن کاملLower semicontinuity for parametric set-valued vector equilibrium-like problems
A concept of weak $f$-property for a set-valued mapping is introduced, and then under some suitable assumptions, which do not involve any information about the solution set, the lower semicontinuity of the solution mapping to the parametric set-valued vector equilibrium-like problems are derived by using a density result and scalarization method, where the constraint set $K$...
متن کاملEntropy of a semigroup of maps from a set-valued view
In this paper, we introduce a new entropy-like invariant, named Hausdorff metric entropy, for finitely generated semigroups acting on compact metric spaces from a set-valued view and study its properties. We establish the relation between Hausdorff metric entropy and topological entropy of a semigroup defined by Bis. Some examples with positive or zero Hausdorff metric entropy are given. Moreov...
متن کاملOptimality conditions for Pareto efficiency and proper ideal point in set-valued nonsmooth vector optimization using contingent cone
In this paper, we first present a new important property for Bouligand tangent cone (contingent cone) of a star-shaped set. We then establish optimality conditions for Pareto minima and proper ideal efficiencies in nonsmooth vector optimization problems by means of Bouligand tangent cone of image set, where the objective is generalized cone convex set-valued map, in general real normed spaces.
متن کاملStructure of the Fixed Point of Condensing Set-Valued Maps
In this paper, we present structure of the fixed point set results for condensing set-valued map. Also, we prove a generalization of the Krasnosel'skii-Perov connectedness principle to the case of condensing set-valued maps.
متن کامل